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ItNTROf UCT Ojj

The compliance calibretion for two-dimensional cracks is seldom

attempted. This is due to the fact that a fairly wide selection of

methods (e.g., finite elements, collocation, complex variable, inte-

gral equations, etc.) are available to obtain stress intensity factors

to 3 good degree of accuracy and also due to difficulty in performing

experiments with sufficient accuracy. For the three-dimensional

p'obllems, in general, the difficulties are compounded, analytically as

well ad exoerimentally. However, for an internally pressurized thick-

wall cy inder with a symmietric internal surface flaw located in the

axial direction, the evaluation of compliance can be accomplished.

This has been done by proper definition of compliance and data reduction.

In fact, a fatigue crack originating at the bore surface tends to be

orientated with its length in the axial direction and depth in the

radial direction.

The theoretical basis for the compliance test using the linear

theory of elasticity is given in Section one.

With a starter notch of a semi-circular cross-section an extensive

set of tests were performed as explained in 'Section two. In the third

section, the method of numerical data analysis is outlined, and the

stress intensity factors are computed. In Section four, we simulate the

actual crack by a simpler geometry and using the method of three-dimen-

sional collocation, the stress intensity factors are computed. The exper-

imental results compare well with the theoretical results obtained. To the

authors' knowledge, such a K1 calibration does not exist in the literature.
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FIGURE 1. Cross sections showing a surface flaw it) the gun tube.
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SECTIGN i - ANALYSIS tF CGNPLIANCE CALIBRATION

The volumetric compliance method for a thin, st"aight-fronted

radial notch has been discussed in [1]. For the present problem of a

symmetric surface flaw located on an axial plane shown in Fiqure 1. it

is clear that strain energy release rates and stress intensity factors

are functions of the axial coordinate x3. However, if we restrict our

attention to the plane x3=O only, the concepts of volumetric compliance

can be extended to compute the stress intensity factors at the deepest

poit cf 'he surface flaw, i.e. at x3 =O. Let the following quantities

be defire'ý a, x3 =O: AV. is the change in the internal volume per unit

length in \3, sue te the internal pressure p; G is the crack extension

force (strain energy relase rate); C AVi/p is the volumetric

compliance, and b is the crack depth. Then,

G p l 2 dC v aG- -P -d , at x3O , (1)

_2 db 3ý

The stress intensity factor at x3=0 , denoted by K1 is

2 = E G- Ep
2  

d

K G '2 ~(AV1/p) at x =0 (2
1 (lv2) 2(i-v 2) db 3 (2)

The above relation is a consequence of a 'plane strain' condition at

x =0, [2]. As indicated in (2), the compliance calibration can be

3

1
UNDERWOOD, J.H., LASSELLE, R.R., SCANLON, R.D. and HUSSAIN, M.A..
"A Compliance K Calibration For A Pressurized Thick-Wall Cylinder
With A Radial Crack" Engineering Fracture Meciianics, Vol. 4, 1976,
pp. 231-244.

2
EMERY, A.F. and SMITH, F.W., "Some Basic Properties of Penny-Shaped
Cracks" Mathematika, Vol. 13, 1966, pp. 172-180.
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accomplis-hed at a given value of pressure by determining the change in

the Internal volume of the cylinder (at x3 =0) for a series of surface

flaws of different depths and performing the indicated differentiation.

However, the measurement which can easily be made is the change in the

nutside volume cf the cylinder per unit length at x3=0 (equivalent

t'o the change in cross-sectional area at x3 =O). In the sequel we will

prove that the derivative of internal and external volume changes for

a given pressure is identical. AVo and AVm are the changes in the out-

side volum.e and material volume per unit length at x3=0. Hence

AV0 = AVi + AVm (3)

If •V i; th, total change in the material volume V bounded by

cylindrical surfaces S1 and S2 between cross-sections S5: x 3= and

S6: x 3-,o and exterior to the upper and lower surfaces of the surface

flaw S3 and S4 , Figure 1, we have

6V = fV e dV , (4)

where e = e11 + e2 2 + e33 is the dilation. The generalized Hooke's

law for a homogeneous isotropic body can be written (using the usual

notations) in the following form: (see e.g. [3])

X6= i + 2vei (i,j = 1, 2, 3) (5)%ij i

Cor-tracýtion gives:

i (3X + 215)e . (6)

Hence

6V f ¼ dV (7)S3X+2 j °V •i

-SOKOLNIKOFF, I.S., "Mathematical Theory of Elasticity" McGraw Hill

3cck Comoany, New York, 1956, p. 66.
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Using the equation of equilibrium

lik,k =0 (i,k 1 , 2, 3)(8

one can show:
o V idV = fV (rIk xj)'k dV (9)

The divergence theorem yields

JV k lk xJ)'k dV S Vk Tik xj dS Tix dS (10)

wnere S is a surface forming the complete boundary of the volume V
V

an6 . '. the direction cosines of the outer normal v of S and T
are .P( ý,crponen-s of the traction vT acting on S. Hence we have

frGm t" in,"'3

dV = fS Ti x dS (11)

and contraction gives

fV ýii dV - J'S Ti xi dS = f S T . r dS (12)

The surface S in Figure I is formed by six surfacesdenoted by Sl,

S.. S6 then

6
AV m 2 J , L Y. n (T) n ' r dS (13)

2ý 21 3X+2jj nwl Sn

wherc (
T

)n are tractions on the surface Sn, From the symmetry we

have (T) 3 = (T) 4 and (T)5 = (T)6 and the outer normals are in opposite

dirpcions for each pair (S 3 , S4) and (S 5 , S6O. The last four

integrals, having possibly the crack depth b as a parameter, vanish.

This completes the proof that AVm is independent of b.

5
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7

Fr or u , ,ine cylinder we have )l -er P )2 =O

*Aere e si ;.. vector in the radial direction. Thus

zy 2vr (14)

and f'ra;. •o'

The stress intensity factor then can be written in terms of the out-

>i' w:r' charqe of the cylindc:- per unit length

I--?-• -"--- at x3 0 (16)

J j( J

*,.'.' -1• : '. ,, .t. TL"•I

The strscs,'nn, made fr a steel cannon tube, was a cylinder with

a 7.1 inch smooth bore and a 14.25 inch outside diameter, giving a

diameter ratio of 2.007 and a wall thickness of 3.575 inches. The

length was 30 inches with a recess 1.5 inch long and 7.3 inch diameter

at each end for 'h( pressure seal.

1': was tosted as e verticl, hollow cylinder, internally pressurized

on a tupporting mandrel so that the end loads were supported by the

ývternal mandrel, giving an open end condition. (See Figure 2.) The cyl-

ilder erd, d. ere ,Paled t.ith threaded closures on the mandrel so that

there were no axial stresses produced in the specimen due to pressure

end loads. The pressure fluid was a synthetic instrument oil which

remains fluid at pressures in excess of those used. The pressure was

fully exerted in the initial notch cavity when the cylinder was pres-

surized.

7
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The wall was initially notched with a semi-circle of 1/4 Inch

radius cut at the bore by electrical discharge machining (EDM). The

notch was 1/2 inch long in the axial direction, 1/4 inch deep in tthe

radial direction and 0.030 inch wide in the circumferential direction

at the midsection of the specimen. A fatigue crack was grown from this

starter notch by hydraulic pressure cycling from zero to 48,000 psi

until it reached each successive desired depth, as determined by ultra-

sonic crack-depth measurement. The circumferential strains were then

read on the outside circumference with bonded foil strain gages at 14

angular positions relative to the notch location.

The strain gages were 1/4 inch gage length and were oriented in

tne circumferential direction in a ring at specimen midlength. Two

gages were located on a line directly over the notch, one at 1 inch

above and one at 1 inch below the cylinder midlength, so as to permit

measurement of crack depth at its deepest point by placement of an

ultrasonic normal probe directly over the notch. Other gages were

located around the midlength circumference at angles from 50 to 1800

on either side of the notcn line, as listed in Table 1.

When measuring the strains at each crack depth,the pressure was

increased to 16000, 32000 and 48000 psi and then decreased to 40000,

32000, 24000, 16000, 8000, 4000 and zero. The pressures were controlled

within + 1%. The readings from all gages were taken in sequence, with

the cylinder held at pressure, using a 24 channel switching unit and an

SR-4 strain indicator located outside the test cell. An identical

strain gage, bonded to an unstrained piece of the same steel lying on the

9



test specimen Drovdi'd temperature compensation during the experiments.

If the final strain reading at zero pressure differed from the initial

zero pressure reading by more than 20 microinches per inch at any crack

depth the readings were repeated to eliminate measurement errors as much

as possible.

Strain gage data for the 48000 psi pressure level are listed for

the successive crack depths in Table 1. The gage pisitions are the

angular locationý on the O.D. from a point directly over the initial

notch.

Figfre 3 shows the final fracture surface of this fatigue crack.

The crack profile at successive crack depths is reproduced in

Figure 4. The corresponding number of cycles to reach each depth is

given in Table 1. Figures 3 and 4 show that the crack, propagated from

the initial semi-circular notch, remained a semi-circle until nearly

2-inch depth was reached. After that it became part-circular or part-

elliptical. It finally acquired the shape of a partially imbedded

ellipse, when the intersection of the crack front with the bore surface

became nearly stationary while the ellipse deepened and lengthened. In

these latter stages of growth, after a 2-in. depth, the rate of propaga-

tion was quite fast. Unfortunately we did not obtain as complete strain

data as would be required for an accurate compliance analysis for the

greater depths. The data is therefore analyzed for the semi-circular

shape up to the 2-inch depth only. In Figure 3 one can see the evidence

of a "free surface shear-lip" formation which fans out at about 200

from the inner wall on either side of the initial notch.

10
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SECTIO! 3 -OAT, ALYSIS

By considering only the cross-section of the cylinder through the

strain gages (i.e., x3 =0),the numerical problem is stated as follows.

Given the tangential strain at selected points on the circumference of

a circlewe wish to determine numerically the change in cross-sectional

area (equivalently AV0 , the change in external volume per unit

length at x3 0).

This can be accomplished in two ways. First,we can integrate the

tangencial strain to obtain the change in the length of the perimeter

2ni
AP f 12• () dý , at x3 =0 , (17)

023

and assuminr, the distorted figire remains circular, we have the change

in cross-section area AA:

A0 4 (2PAP + AP2) (18)

A more rigorous approach is to compute

f 2
Tr fr2+ur(r,f) rdrdý (19)0 o r2

Frem strain displacement relations, we have (using cylindrical

coordinates):

jUr(r 2,4) r2C (r 2 'p) - (20)

where ur, u are radial and tangential displacements. It can be
r '

shown by eigenfunction expansions that the second term at the right of

(20), for the present problem, is even in 0 and periodic in 21f

Neglecting second order terms (linear elasticity),it is seen that this

term makes no contribution to the integral in (19). Hence,essentially

13



we have ur(r 2,¢) r r 2 6¢(r 2 .0) for the integration of (19). It was found

that the evaluationsof AA ,using the two methods,agree with each other

to four significant figures.

For the data analysis,our choice of an angular functioi was an

interpolating periodic cubic spline (4].

Definition of cubic spline:

Given an interval , < < x < B , (21)

a mesh on the interval,

A0 < x< < x< , (22)

and associated set of ordinates (data points)

Y: YO' YI - ' YN (23)

then the cubic spline satisfies:

SA(Y; x) E C2 on [a, f]

SA(Y, xj) = yj (j=O, 1, ... , N) , (24)

and is coincident with a cubic on each interval,

x jl< x < x (J=l, 2,. ,N) .(25)

If,in addltion,the derivatives

SA (P) (a+) - () -) (p=O, 1, 2) (26)

the spline is said to be periodic with period (0-a)

If alternatively

Sa(Y; xj) = yj + Ej , (0=O, 1, .. , N) (27)

with the ej subject to some minimizing constraint; it is said to be

an approximating rather than interpolating spline.

4AHLBERG, J. H., NILSON, E. N., WALSH, J. L., "The Theory of Splines
and Their Applications," Academic Press, New York, 1967.

14



As described in the previous section the data was taken at 14 angular

position for six crack depths and at nine pressures. Discounting the

data for crack depths greater than 2 in. (due to gage and tube failures)

we have 756 data points for numerical analysis. To indicate the smooth

nature of the strain data and interpolating functions we show in

Figures 5a - 5e the results for various crack depths at 48,000 p.s.i.

Once the spline function has been found the changes in the cross-

sectional area are computed by the methods indicated above. The partial

results ire )•resented in Table 2. It should be noted that the first row

in Tabl. 2. for zero crack depth, is not empirical data but extrapolated

values and thc set of data corresponding to starter notch (b-.25) have

been elininated. Tee stress intensity factors now have to be computed

from (16)
1/2

K E d(AV0/p) a
1 L2(l-v 2 ) db j at x3 =O , (16)

where AV0 is the change in the outside volume of the cylinder per unit

length at x3=0 and thus is numerically equivalent to AA0 and also from
1/2

K d(AVo/p) 1/2

K1  2 2(1-v 2 ) db* ] at 3  ,

where b* = b + Z -) is an effective crack depth suggested by

Irwin [5], (0 < h < 1 , c = yield stress) to correct for the effect of
plastic deformation at the crack boundary.

5IRWIN, G. R., "Structural Aspect of Brittle Fracture", Applied

Materials Research, Vol. 3, 65, 1964.
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Table 2. Change in Area AAo (in 2 ) Enclosed by the Outer
Perimeter of the Cylinder at x3 = 0 for Various

Crack Depths at Spquential Pressure Levels

CRACK DEPTH PRESSURE psi

b In 32,000 48,000 40,000 32,000

0 0.2312 0.3468 0.2890 0.23!2

0,5 0.2325 0.3493 0.2908 0.2328

0.75 0.2326 0.3512 0.2911 0.2334

1.0 0.2375 0.3604 0.2958 0.2351

0.5 0.2389 0.3591 0.2989 0.2392

2.0 0.2496 0.3767 0.3142 0.2507

21
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To compute the deriivotive of AV0 (b) we used a non-periodic approximating

cubic spline with an algorithm which minimized

n 2tn (S'.'( db + k {S (b -A9V)
(b ) (29)

A 1 Oi

where A is i'ntroduced to allow us to strike a balance between the

amount of smoothing desired vs. maintaining the integrity of data. As

seen from (28) we must of necessity evaluate b* and Kl*/p , for a

2iven value of h, by an iterative process which is stable. As a guide

to selection of , we consider the type of K expression common in

ractiie mechanics , K (constant) bI/2 and see that d2 K /db2 is
strictly monotonic increasing. A value of X=10 proved quite reasonable

leading to a rapid and stable convergence of K */p.

The results of such an analysis for pressures of 40,000 and 48,000

psi are shown in Figure 6. in an ideal linear experiment K

for different pressure, should fall on the same curve. To partially

account for plastic deformation at the crack surface we have incorporated

the Irwin's correction term, as explained before. In Figure 6, we show

the results for 48,000 and 40,000 psi without the Irwin-correction

(h=0) and with correction (h=l). For clarity we have deleted the results

for inter'mediate pressures and different values of h. In Figures 7, 8,

and 9 we show the results for different pressures, and h. In all of

tnese figures It is seen that the results are fairly close to each other.

SECTION 4 - RESULTS BY COLLOCATION METHOD

Because of the complexity in the geometry of the problem it seems

that an analytic closed-form solution is not yet possible. However,

23
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FIGURE 10. A rectangular block wvith a circular surface flaw Is used to
simulate a shallow surface crack in a thick-walled tube.
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since we are working with relatively shallow surface cracks compared to

the wall thickness of the tube (most of the fatigue life is confined to

such crack growth as seen from Table 1) we can effectively simulate the

curved surface of the tube by a rectangular block with a surface flaw

in-the form of a segment of a circle as shown in Figure 10 and apply the

method of collocation. It is evident from Figures 3 and 4 that there

is a 'shear lip' region extending radially to about 200 on either

side of the inner wall of the tube. Hence the actual crack was sim-

ulated by a segment of a circle with a matching depth and the center

having an offset d of .3(radius) of the circle as shown, i.e.(b=a+d).

The thickness (TH) of the block was taken equal to the wall thickness

(i.e. TH=R -R ) and it was found that it is sufficient to take half the
0 i

width (HW) and half the height (HH) equal to three times the radius of

the crack (HW=HH=3a). The loading condition on the block corresponds

to the Lam4 solution together with uniform tension due to the presence

of pressure inside the crack:

az/p + 1 Ri + Ri2 (30)
lRi 2  

R0 7 (Ri+d+x) 2

R02

In the sequel, we give a brief outline of the exterior collocation

method, the details can be found in [6].

6
HUSSAIN, M. A., HAGGERTY, R. G., PU, S. L., and NOBLE, B., "Exterior
Collocation For Three Dimensional Surface Flaw", WVT-TR-75053, Water-
vliet Arsenal, Watervliet, N.Y., 1975.
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The method of exterior- collocation,for a symmetric surface flaw located

on the plane z=O, requires construction of a set of functions which sat-

isfy the mixed boundary conditions on the plane z=O. These conditions

are: the normal stress is zero inside the crack-surface and normal dis-

placement is zero outside the crack-surface. Symmetry of the problem

further requires shearing stresses to vanish on the entire plane z=0. For

the case of a circular flaw this was accomplished using three-dimensional

Boussinesq potentials where the harmonic functions were represented by

Kobayashi potentials (integral representation of potential functions)

and superposition of such a solution with uniform field and plane strain

solutions to satisfy the above boundary conditions. The results are:

Or A n{n(n+l)r-2[(l-2v)ll-zI 2 ]-(I3-zl 4 )-r-l[(l-2v)15 -z1 6 ]
n

-Enan 3 / 2 (n-2)(2n+l)r(n+I/2)rn/[4/•vr(n+l)]} cos no

00= An{'n(n+l)r-2[(l-2,)ll-zl2]'2vl3+r'l[(1-2v)15-zl6]

n

+ca'n-3/ 2 (n+2)(2n+l)r(n+I/2)rn/[4vZvr(n+l)]} cos no

Oz = Ao0Afa-3 /2 + A/2)r

[/v'r(n+l)]} cos no

"troE = n An(n(n+l)r- 2 [(1'2v)il'zl2]-nr'l[(12v)15-zI 6]
n

+a-n- 3/ 2 n(2n+l)1'(n+I/2)rn/[4/•vr(ri+l)]} sin no

Trz = An z[-nr- 1
3 +17 ] cos nO

n

"oz • - 1nAnnzrl3 sin no (31)
n
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Where cn=O for n=O, cn=l for ntO , the summation Z is over n=O, 1/2,

1, 3/2, .. , and An's are constants to be determined by the collocation

method. We have used the cylindrical coordinate system (r,O,z) with the

origin located at the center of the cricular crack of radius 'a', and I's

are integrals given below:
-2 1 /2e-zkk

II f k Jn(kr) Jn+3/ 2 (ka) kleZdk

12 = - 311/3Z , 13 - 12/z, 14 = 13/az (32)

and
15 = fo k I n-l(kr) Jn+3/2(ka)kl/2e-zkk

16 = . 31I51Oz , 17 M 6 /161z (33)

After some basic integration,it can be shown from (31) above,

0 , r< a,

Cz(z=O): 2 (34)

aT2 + AAn{ T-a( r[ rl Fn 12; n;2 a2)

+ rr-a (2n+l)r(r+l/2) I cosno, r>a,

0 , for r > a

2Guz(z=O)=

2V~r (l-v)a'3/ 2 (a2-r2)1/2 j A,(r/a)n cosno , r~a . (35)
n

Hence it is seen from (33), (34) that the set of functions selected

satisfy the mixed boundary conditions of the crack problem. The stress

intensity factor can be computed from equation (34) or (35):
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Table 3. Values of An's for N=28, v=0.3 and a=l", d&0.3%, TH=3.575',

HW=3", HH=3" with Linear Constraint Ao = -Ancos n

{cos 1
'(d/a)}

n, r. An+i/2

0 0.17074000 xlO1 0.28808100 x1O2

1 0.21008300 xlO3 -0.72235200 x1O3

20.15196900 xl4 -0.21668300 xO

1 0-21888900 x1O4 -0.15776100 x1O4

4 0,78043600 x103 0.22554700 x10
3

5 0.51905600 >1I01 0.24505900 x10
2

6 - C.89!67900 xlO1 0.17788400 x10
1

7 - 0.18092500 x 101 0.16957900 x10

8 - 0.66020300 x10 0  
- 0.28821800 x10-

1

9 0.13661300 xl0
0  

- 0.43773500 0l-
1

10 - 0.13656300 x10 1  
0.18752300 xlO-I

11 - 0.89871200 x0-2 0.26154100 x10
2

12 - 0.48300500 xlO-
3  0.50154900 x10

4

13 - 0.14393100 x10-5 0.15544700 xlO-6

4-- --- ----
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K =K(0) Y7 aI A cosno (36)I~ n n

once the A 's have been computed.
n

In general it is not possible to obtain A 's in the infinite series.
n

An approximate solution, however, can be found by satisfying boundary

conditions at m selected discrete points, called collocation points,

on the remaining boundaries exterior to the plane of the crack. At each

boundary point there are three boundary conditions. From the 3m equa-

tions we can at most solve for 3m unkown coefficients A 's. To avoid ann
illconditioned matrix, the boundary conditions are to be satisfied in

a least square sense. Computationally, the least square procedure, in

obtaining stable results, is to choose a rather large value of m and

solve A 's from the NxN system of 'normal equations', which are derived
n

by minimizing the sum of the squares of errors at collocation points.

Since the value of N is not known a priori, we solve the normal equa-

tions for N=l,2,...until the required stability is achieved in K1 and

there is no significant change in 'residuals'. As explained in [6]

there is an additional requirement for surface flaw problems; namely

the boundary traction must vanish at points of the crack-free surface

intersection. This gives a linear constraint on A 's (see Table 3) and
n

leads to zero stress intensity factors at such points. With TH, HH, HW,

a, d, v, NFigure io, as input parameters and automatic generation of

m nearly equally spaced collocation points, a computer program was

6 HUSSAIN, M. A., HAGGERTY, R. G., PU, S. L., and NOBLE, B., "Exterior
Collocation For Three Dimensional Surface Flaw", WVT-TR-75053, Water-
vliet Arsenal, Watervliet, N.Y., 1975.
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written which calculates An's and the stress intensity factors as

briefly described. (The symmetry of the problem allows us to work with

half of the geometry.)

In Figure 11, we plot K1/p vs N, up to N=35, showing the stability

of the results. It is seen that the results are stable within 3-4% for

N>15. In Figure 12, we plot Kl/p vs 0 for N=28 with 109 collocation

points. It is seen that Kl/p is maximum at 0=0 (i.e. at the deepest

point of the crack) and vanishes at 0=107.460 (i.e. at points of the

crack-free surface intersection). In Table 3, we list A 's for the above
n

case showing convergences of An for large n. Similar computations were

carried out for crack depths of b=a+d = .1, .2, .3, .4, .5, .75, 1.0,

1.3 and 2. inches. The resulLs are shown in Figure 13. In the same

figure, we have plotted Kl/p obtained by compliance results (see

Figure 9). Excellent agreement is seen between the experimental and

theoretical results.

CONCLUDING REMARKS

In this report we have developed a compliance calibration of a

thick-walled circular cylinder with a symmetric internal surface flaw.

Results obtained agree well, for small crack depths, to those obtained

analytically for a semi-circular flaw by the collocation method.
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APPENDIX A

A collocation analysis for simulated crack geor. try was also

carried out for the case of an autofrettaged tube. Due to the presence

of compressive stress at the inner bore of the tube, it was reasonable

to assume the loading condition as a superposition of applied and the

residual stress fields. Hence, eq (30) was replaced by:

z/p 1+ a'Z + __2---a

(l-a
2
/b

2
) { b2  

(a+d+x)2

I .( a+d+x . 2 a2 a2 2 2" (2 ,og(ý--}x+l••- '..)2 1g1•/l•
0 p b2 b2 (a+d+x)2 a b2 b2

+ for (a+d+x)<p

L_- [(p
2

/b
2

+p
2
/(a+d+x)

2 )-(2 logp/a+l-p
2 /b

2 ) (A-1)

(a 2
/b 2

+a 2
/(a+d+x) 2

)/(l-a 2
/b 2

)],

for (a+d+x)>p

where a=Ri, b=Ro , are the inner and outer radii. ay the yield stress

p is the pressure and p is the interface depending upon the percentage

of autofrettage (e.g., for 30% autofrettage p-a+.3(b-a).) The result:i

of such a computation for R1 3.55" R =7.125" p=48,000 psi, ay=170,000

psi, and crack depths b = .125", .25", .5", .7E"$ .9", 1", 1.25", 1.5',

1.75", 2" are plotted in Figure Al. It is seen that KI/p is substan-

tially lower for an autofrettaged tube as compared to a non-autofrettaged
tKI/P

tube (Fig. 13). It is further seen that --- is bounded as

opposed to a non-autofrettaged tube at b=0.

The compliance tst as previously explained was done for a 30%

autofrettaged tube of the same dimensions as before. The change in the
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cross-sectional area was computed as before and the results for a few

pressures are given in Table Al. It is immediately seen that the data

is quite scattered for small crack depths. This may be due to the fact

that the notch was put in before the autofrettage process or may be

due to relaxation of residual stresses under cyclic loading in the

presence of a notch. Neglecting the first three data points and extrap-

olating the data for zero crack depth to MA0 =.357in 2 the stress intensity

factors with h=l.O and X=lO00 (less smoothing) were computed. The

results are shown in Figure Al, together with the collocation data.

Again, fairly good agreement is seen for small crack depths.
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